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Abstract— Expensive ultrasonic anemometers are usually
required to measure wind speed accurately. The aim of this
work is to overcome the loss of accuracy of a low cost hot-wire
anemometer caused by the changes of air temperature, by means
of a probabilistic calibration using Gaussian Process Regression.
Gaussian Process Regression is a non-parametric, Bayesian, and
supervised learning method designed to make predictions of an
unknown target variable as a function of one or more known
input variables. Our approach is validated against real datasets,
obtaining a good performance in inferring the actual wind speed
values. By performing, before its real use in the field, a calibration
of the hot-wire anemometer taking into account air temperature,
permits that the wind speed can be estimated for the typical
range of ambient temperatures, including a grounded uncertainty
estimation for each speed measure.

Index Terms— Sensor calibration, Gaussian processes, hot-wire
anemometer.

I. INTRODUCTION

HOT-WIRE sensors are low-cost devices usually
employed to measure wind speed, and sometimes the

architecture, into: constant-temperature anemometer (CTA),
constant-current anemometer (CCA), and constant-voltage
anemometer (CVA). The difference between them depends on
the variable whose set-point is the input of the control circuitry,
namely, resistance temperature, electric current, or applied
voltage, respectively.

Hot-wire anemometers have been used for decades in a
wide range of applications that require measuring the speed
of a fluid [1]–[4]. In particular, they are well suited for low-
flow rate measurements, and manufacturers often recommend
its use for low to medium wind speeds. As will be seen
in section III.C, a good performance has been observed for
speeds up to 20 m/s, and we would not recommend using
this kind of sensors for higher speeds. The reason is twofold:
(a) the error and the uncertainty of the prediction would
increase, and (b) due to the mechanical fragility of the sensor.
Although a minimum detectable velocity is not provided by
the manufacturer of the sensor at test in this work, this
research found that small changes in the range 0.1-0.2 m/sare
resolvable.

Hot-wire anemometers are nowadays widely-used for their
high measuring bandwidth, which allows detecting fast veloc-
ity fluctuations. Their small size and low weight also make
them suitable for applications with limited space. They are
easy to handle, low cost and additionally, they require very
little power to operate, enabling their use in battery-powered
devices [5].

Calibration of hot-wire anemometers is typically carried
out for some predefined constant temperature. This becomes
one of the main disadvantages of this type of sensors [6]:
if they operate inside a fluid flow at a different tempera-
ture than the one used during the calibration, measurements
will not be accurate. Some authors have developed different
methods for correcting wind speed measurements in hot-
wire anemometers [7]–[10]. These methods typically require
other application-specific parameters such that the kinematic
viscosity and thermal conductivity of the fluid. However,
air temperature has a significant influence in wind speed
corrections [11], [12].

Most practical applications of wind speed sensing imply
operating at temperatures that vary through the day and
the different seasons in the year. Even if the sensor works
isolated or covered, the temperature might still present sig-
nificant variations. It is well-known that readings from hot-
wire anemometers depend on both, the ambient and the wire

speed of other fluids. They comprise a thin metallic wire 
with a typical diameter in the range 0.5-5 μm, and a length 
of 1 mm. They are usually made of platinum, tungsten, 
or platinum-iridium.

Their operating principle consists in heating the wire with an 
electric current (Joule effect) up to some temperature above 
the ambient and then exposing it to the incident fluid flow 
such that it is cooled by, mainly, convective heat transfer. 
The fluid velocity can then be inferred as a function of the 
heat transfer from the heated wire and the fluid. Hot-wire 
anemometers can be classified, depending on their control
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temperature [7]–[10]. For this reason, we need to consider
ambient temperature as an extra variable to obtain wind speed
from their non-linear relationship (generally, wire temperature
is always considered).

The present work proposes using machine learning (ML)
techniques to approach this calibration problem. In particular,
we show how Gaussian Process Regression (GPR) [13] has
the best performance from all the methods included in our
comparison. A Gaussian Process (GP) is a distribution over
functions, and GPR is a non-parametric, Bayesian, supervised
learning method, with wide applications in the industry and
academic research [14]–[16]. In a nutshell, GPR takes a set
of samples and builds a model from them by estimating
the posterior joint probability of the GP, hence building a
model able to make predictions about values not observed in
the samples. A key characteristic of GP is its capability of
providing a measure of uncertainty for each prediction. Also,
a GPR can express any prior knowledge, e.g. from a human
expert, by means of a priori probability density functions.
It has a good adaptability in dealing with complex non-linear
problems with small samples.

In comparison to other non-linear, widely-used
machine learning methods such as Support Vector
Machines (SVM) [17]–[20] or Artificial Neural Networks
(ANN) [21]–[23], GPR has the advantages of being
easier to implement, self-adaptive to enable superior
parameter estimation, flexible enough to make non-parametric
inferences [24], and providing a grounded estimation for the
output uncertainty. We claim that the latter is of paramount
importance for any engineering process, since any physical
measurement, direct or indirect, should be accompanied by
its expected accuracy.

The main contribution of the present work is two-fold:
(i) we discuss and justify what metrics should be observed
to decide among different competing regression techniques in
order to select the one with the best predictive performance,
and (ii) we apply such methodology to the study of how a
low-cost hot-wire anemometer can be calibrated by means of
machine learning techniques to overcome its most important
drawback, namely its loss of accuracy when air temperature
changes. The result is the identification of a method that
enables the use of low-cost anemometers with reasonable
accuracy within a typical range of ambient temperatures,
therefore enabling its use in a wide range of applications where
the low cost of these devices might be a significant advantage,
for example, in large networks of sensors.

This paper is organized as follows. First, the theoretical
bases of GPR are introduced in Section II. The experimental
setup and the metrics used for the evaluation of the model are
detailed in Section III, together with the experimental results
and its discussion. Finally, some conclusions are drawn in
Section IV.

II. BACKGROUND

This section first provides a brief summary of common
regression techniques, including Gaussian Process Regres-
sion (GPR), and then introduces the basis of GPR for the
particular setup employed in this work with a greater detail,

given the importance of this method in subsequent experimen-
tal results.

A. Regression Methods

Regression is the problem of finding a suitable model to
predict the values of one or more dependent variables (outputs)
given the known values of the independent variables (inputs).
Each one of the existing regression models typically has a
small number of parameters which must be learned or fitted
from training data: pairings of input and output variables.

Next, we enumerate the different regression methods
included in our comparison (refer to Table II), as named
in their reference implementation from MATLAB’s Statistics
and Machine Learning Toolbox (SMLT). In-depth reviews on
each technique can be found elsewhere in the vast related
bibliography [25]–[29].

Linear regression models [27] are easy to interpret and fast
to evaluate, but often lack a precise predictive accuracy.

Regression trees are non-parametric models which naturally
define subgroups, scale well with the complexity of the data,
and are not limited by the number of predictor variables [30].
They are easy to interpret, fast for fitting and predicting, and
have a reduced memory cost.

Support Vector Machine (SVM) regression is a nonpara-
metric technique, relying on kernel functions, where data are
mapped into a high dimensional feature space via nonlinear
mapping, after which a linear regression is performed in this
feature space [25]. Linear SVMs are easy to interpret, but
may have low predictive accuracy, while nonlinear SVMs are
more difficult to interpret, but can be more accurate. The SVM
regressions compared in this work are:

• Linear: the kernel function is linear. The model flexibility
is low.

• Quadratic: the kernel function is quadratic. The model
flexibility is medium.

• Cubic: the kernel function is cubic. The flexibility of the
model is medium.

• Fine, medium, and coarse: These models are the same
except for different Kernel scale values of

√
P/4,

√
P ,

and 4
√

P , respectively, with P the number of predictors.
The response function of “fine” is well-suited for rapid
variations, while “coarse” better fits very slowly-varying
signals.

Ensembles of Trees combine several regression trees to
achieve better predictive performance than the correspond-
ing single regression trees [31]. The following versions are
compared:

• Boosted Trees: it consists in least-squares boosting with
regression tree learners. The model flexibility is medium-
high.

• Bagged Trees: it consists in bootstrap aggregating or
bagging, with regression tree learners. The flexibility of
this model is high.

Gaussian Process Regression provides a probabilistic model
on the space of functions, as discussed in Section II-B.
MATLAB’s toolbox implementation automatically fits the
method flexibility to offer a small error while simultaneously



protecting against overfitting. Kernel functions that are fre-
quently used in the literature are: Rational Quadratic, Squared
Exponential, Matern 5/2, and Exponential.

B. Background on Gaussian Process Regression
Consider a training data set D of n observations, D =

{(xi , yi )|i = 1, . . . , n}, where x is an input vector of dimen-
sion N , and y is a scalar output or target. Given a new input x∗
(test input), the goal of the regression is to obtain the predictive
distributions that have not been seen in the training set. On
the basis of training data, the aim is to obtain a function that
makes predictions for all possible input values. To carry out
this, assumptions about the characteristics of the underlying
function must be made, as otherwise any function which is
consistent with the training data would be equally valid.

GPs can be seen as a generalization of the Gaussian
probability distribution to a distribution over functions. A GP
performs inference directly in the space of functions, giving
a prior probability to each possible function (where higher
probabilities are given to functions that are considered to be
more likely) and learning the target function from the training
data.

The specification of the prior is important, because it
fixes the properties of the functions considered for inference.
These properties are entirely dictated by the covariance func-
tion, which is symmetric and positive semi-definite for any
input point x. The covariance function specifies the covari-
ance between two or more random variables and, typically,
the covariance functions have a number of free parameters
called hyperparameters. Finding suitable hyperparameters for
the covariance function is the biggest problem of learning
in GP. The hyperparameters give us a model of the data and
characteristics (such as smoothness, length-scale and station-
ary) which we can interpret. Thus, the covariance function is
the most important factor in order to control the properties
of a GP, thus it must be carefully selected [11], [32]. In our
study, we will use different covariance functions and we will
compare them in order to choose the one achieving the best
predictive performance for our training data set.

A GP over a function (to be estimated) f : R
N → R is

entirely specified by its mean function, m(x), and a covariance
function, k(x, x

′
), for any two points of the state space

x, x′ ∈ R
N , such that:

m(x) = E[ f (x)] (1)

k(x, x′) = cov( f (x), f (x′))
= E[( f (x) − m(x))( f (x′) − m(x ′))] (2)

and the GP itself is denoted as:
f (x) ∼ G P(m(x), k(x, x′)) (3)

where we used a ∼ b to denote “a follows the probability
distribution b”. In practice, we should also take into account
the noise, which is customarily assumed to be an additive,
independent identically distributed (i.i.d.) Gaussian noise ε
with zero mean and variance σ 2

n , that is:
y = f (x) + ε, ε ∼ N (0, σ 2

n ) (4)

and where N (·, ·) denotes the multivariate Gaussian or normal
distribution with the given mean and covariance matrix. For
the sake of simplicity in notation, the mean function is usually
taken to be zero and we will consider it in this way (note that
the mean of the posterior process is not confined to be zero).
Then, the prior distribution of the observation target y is:

y ∼ N (0, K(X, X)+σ 2
n In), with K(X, X)=(Kij )n×n (5)

where X denotes the n × N matrix of the n training samples
of dimensionality N , K (· , · ) refers to the matrix with the
entries given by the covariance function k(· , · ) being the
matrix elements Kij = k(xi , x j ) and In is the n-dimensional
identity matrix.

The joint probability distribution of the training and test
sets according to the definition of GP follow a Gaussian
distribution. Then, the joint distribution of the observed target
values (y) and the test function at new inputs values ( f∗) is:[

y
f∗

]
∼ N

(
0n×1,

[
K(X, X) + σ 2

n In K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
(6)

where, in a similar way to X , X∗ is defined as the n × N
matrix of the n testing N-length input vectors.

Conditioning the prior to the observed training outputs
and taking into account that the posterior distribution over
functions is also a Gaussian, we obtain the key predictive
equations for GPR:

f∗
�= E[ f∗|X, y, X∗]
= K(X∗, X)[K(X, X) + σ 2

n In]−1y (7)

cov( f∗) = K(X∗, X∗) − K ·
·(X∗, X)[K(X, X) + σ 2

n In]−1K(X, X∗) (8)

where f∗ and cov( f∗) are the estimated mean of the predictive
distribution and its covariance matrix, respectively. Therefore,
given a test sample, and on the basis of the training set and
covariance function, a GPR model can predict a mean value
f∗ (our best estimation for y∗) and a variance which represents
the uncertainty of the estimated output.

C. Hyperparameters Selection

The selection of hyperparameters, together with the choice
for the covariance function, are the key design factors of GPR.
Selection of optimal hyperparameters, stacked in the vec-
tor θ , is done by maximizing the marginal likelihood function
p(y|X, θ). However, following the common practice, due to its
superior numerical stability and efficiency, the corresponding
negative log likelihood is minimized instead:

log p(y|X, θ) = −1

2
yT K−1

y y− 1

2
log

∣∣Ky
∣∣ − n

2
log 2π (9)

where Ky = K(X, X) + σ 2
n In is the covariance matrix for

the output vector y. The negative log marginal likelihood is a
statistical technique used for estimating the optimal parameters
of a model. The first term (− 1

2 yT K−1
y y) measures how well

the model fits the data, the second term (− 1
2 log

∣∣Ky
∣∣) is a

complexity penalization term and the third term (− n
2 log 2π)

is a normalization constant.



Fig. 1. Wind tunnel used in this work. (a) Overview of the entire system.
(b) View of inside of the tunnel, where the temperature and wind sensors are
installed. (c) Detail view of the placing of sensors, with the tunnel split in
two during the experiment preparation.

To find out the minimum of Eq. (9) and, consequently to find
the optimal hyperparameters, the conjugate gradient method is
usually used. The conjugate gradient is an iterative method of

optimizing functions based on gradient-ascent. The calculation
of the partial derivatives of the log marginal likelihood with
respect to the hyperparameters is required [13]:

∂

∂θ i
log p(y|X, θ) = 1

2
yT K−1

y
∂Ky

∂θ i
K−1

y y (10)

− 1

2
tr(K−1

y
∂Ky

∂θ i
)

= 1

2
tr((ααT − K−1

y )
∂Ky

∂θ i
) (11)

where tr(· ) is the trace of its matrix argument, and α = K−1
y y.

One of the main drawbacks of GPR is the complexity
of computing the marginal likelihood because of the matrix
inverse operation. In theory, it has a complexity of O(n3)
with n the dimension of training inputs. Although efficient
factorizations can be applied (e.g. Cholesky) instead of naive
matrix inversion, this operation still remains as a bottleneck
of the training procedure.

III. CASE STUDY

A. Experimental Setup

Experiments were carried out inside a wind tunnel at
the University of Almería (Spain). The tunnel has a length
of 4.74 m, a circular cross-section of 38.8 cm diameter,
contraction ratio of 1:5:32 and the coefficient between the
entrance diameter and the length of the contraction section
is 0.92 [33], [34]. An axial fan (Model HCT-45-2T-3/AL,
Sodeca S.A., Sant Quirze of Besora, Spain) induces the air
flow in the wind tunnel, and a Micromaster 420 Inverter
(Siemens Energy & Automation Inc., Alpharetta, GA, USA)
is used to control the fan speed, by modulating the current
frequency between 0 and 50 Hz.

The anemometer under calibration is a hot-wire anemometer
of the popular model “revision C” by “Modern Device”.
To perform the calibration we rely on a more reliable
anemometer, model “Windsonic” by Gill Instruments Ltd,
as ground truth. The latter is an ultrasonic anemometer,
with a measurement range of 0 to 60 m/s and a precision
of ± 2%. In addition, air temperature is measured by means
of a PT100 in order to improve the accuracy of the hot-wire
anemometer own temperature measurements.

In order to achieve the calibration of the wind sensor, it is
necessary to find the relationship (if it exists) between the
inputs and outputs, such that the calibrated model predicts
outputs as close as possible to the real values. The inputs of
our system are considered to be the raw voltage readings from
the hot-wire anemometer and the air temperature from the
PT100 sensor, while the output of the system is the wind speed
measured from the ultrasonic anemometer. Data of these three
sensors (voltage of hot-wire anemometer in volts, air temper-
ature in Celsius degrees and wind of ultrasonic anemometer
in meters per second) were measured every 2 seconds while
wind speed was varied between 0 and 21 m/s. The controller
allows changing the speed continuously (e.g. a velocity ramp)
but speed was increased step by step instead, in order to allow
the flow inside the tunnel to stabilize. We waited 20 seconds



after each speed change to ensure that both the sensor and the
flow were stable before picking a measure for the dataset. Sev-
eral campaigns of measurements were performed at different
temperatures from 19 to 30 ◦C.

The measurement cycle was similar for all temperatures
at test: starting at 0 m/s, the wind speed was increased in
small steps, while attempting to provide a good sampling of
low to medium wind speeds, where hot-wire anemometers are
more reliable and find their most common working conditions.
Therefore, our experiments mainly focus on wind speed values
up to 10-15 m/s, approximately. On the other hand, wind speed
was increased modulating the current frequency manually
and waiting for a determined time to stabilization and then
for another time period to allow enough data records to be
grabbed. These periods were measured manually, hence the
existence of more data in some measure cycles. Overall, more
than 4000 input-output data points were obtained.

B. Evaluation of the Model
To assess the performance of the model, different metrics

have been used:
• Mean Absolute Error (MAE): it measures the average of

all absolute errors between predictions and ground truth
values. It reveals how similar the predicted values are to
the ground truth values. M AE = 1

n

∑n
i=1 |yi − ŷi |,

where yi is the ground truth value of the i-th sample, and
ŷi is the corresponding predicted value.

• Root Mean Square Error (RMSE): it measures the square
root of the average of all squared absolute errors between
predictions and ground truth values. It reveals the overall

deviation of both values. RM SE =
√

1
n

∑n
i=1 |yi − ŷi |2,

where yi is the ground truth value of the i-th sample, and
ŷi is the corresponding predicted value.

Models having low MAE and RMSE are preferred. Both
metrics evaluate the model prediction error and are indifferent
to the sign of error. The main differences between them is
that RMSE gives a relatively high weight to large errors,
since the errors are squared before they are averaged. For that
reason, RMSE is preferred when large errors are particularly
undesirable.

• Coefficient of determination or R2: it provides a measure
of how well future samples are likely to be predicted
by the model. The value of R2 always lies between
−1 and +1. Values close to zero represent no association
between the variables, whereas values close to −1 or
1 indicate strong relationship between predictions and
ground truth values.

R2 = 1 −
∑n

i=1 (yi − ŷi )
2∑n

i=1 (yi − y)2 , where: y = 1

n

n∑
i=1

yi (12)

where y is the average of the ground truth values, yi is
the ground truth value of the i-th sample and ŷi is the
corresponding predicted value.

C. Experimental Results and Discussion
Next, we expose the experimental validation of the proposed

GPR-based wind speed estimator. The flow chart of the

Fig. 2. Flow chart describing the proposed calibration and validation process.

TABLE I

TRAINING AND TEST SETS SELECTED IN SECTION III.C.3

calibration process can be seen in figure 2. As it can be
observed in figure 2, the entire training set has been used
to train the GPR model: both the matrix X , corresponding
to hot-wire anemometer voltage and air temperature, and the
vector Y corresponding to the real wind speed measured with
the ultrasonic anemometer. Once the model has been trained,
the matrix X∗ of the test set (hot-wire anemometer voltage
and air temperature) is used to predict wind speed and obtain
the corresponding confidence interval. Finally, the vector Y∗
(real wind speed) of the test set is used to analyze the error
committed and evaluate the GPR model.

Different sizes of data are included in the training and test
sets. In Table I are summarized the number of points selected
for the training and test sets in the GPR model for each
subsection of Section III.C.

To ensure a correct estimation of credible intervals,1

the GPR model needs to account for the additive Gaussian
noise employed in the model [16]. MATLAB’s toolbox for
Gaussian process models optimizes the standard deviation of
that noise, denoted as “Sigma”, while training from a given
input data set. Finally, when the GPR model makes a predic-
tion, it also generates a prediction interval by considering the
uncertainty of both, the additive noise (the “Sigma” value),

1Although in most Engineering literature the term used is “confidence
interval”, according to [35], [36] in the Bayesian Statistics “credible interval”
is a more accurate term.



TABLE II

EVALUATION OF DIFFERENT REGRESSION MODELS FOR OUR WIND
SPEED DATASET. (LR: LINEAR REGRESSION; RT: REGRESSION

TREE; SVM: SUPPORT VECTOR MACHINE; ET: ENSEMBLES

OF TREES; GPR: GAUSSIAN PROCESS REGRESSION

and the uncertainty value of the parameters learned from the
data.

1) Comparison of Regression Methods: First, it is conve-
nient to assess whether GPR is the best technique for the
data under study, in terms of being able to make accurate
predictions. To verify this fact, we trained multiple regression
models and evaluated their “validation” errors. These process
was carried out with MATLAB’s regression Learner App,
included in the Statistics and Machine Learning Toolbox. The
entire data set was used to training the models, and Cross
Validation was used with 6 folds. Folds can be understood as
subsets of data. Cross Validation partitions the data in folds,
trains the model using the out-of-fold observations, assesses
the model performance using in-fold data and finally calculates
the average test error over all folds. This method makes an
efficient use of all the data and permits to obtain a good
estimation of the predictive accuracy of the final model. The
resulting errors of the regression models are shown in Table II.

The results confirm that Gaussian Process Regression is the
regression model that best fits the data. In particular, Gaussian
Process Regression with exponential as covariance function
produce the lowest MAE and RMSE, and a good value of R2.

2) Information-Based Comparison of GPR Models: In order
to compare the GPR models, the Bayesian Information Cri-
terion (BIC) [37], [38] has been used. BIC is a metric based
on the on the highest posterior probability to finding the best
model for make predictions. BIC model is defined as:

B IC = −2 L + m log n (13)

where L denotes the log marginal likelihood, p the number of
Kernel parameters and n the number of data points employed
in the model. The model fits better the data when lower value
of BIC is obtained. The likelihood takes into account both,
how close the predicted values are to ground-truth, and how
large is the predicted uncertainty.

TABLE III

COMPARISON BETWEEN THE DIFFERENT GPR MODELS AT TEST,
USING AN INFORMATION-BASED CRITERION (BIC)

TABLE IV

RESULTS OF MAE, RMSE AND R2 FOR TRAINING AND TEST POINTS,
OF THE GPR MODEL WITH EXPONENTIAL AS COVARIANCE

FUNCTION, USING RANDOMLY-SELECTED 70% OF

ALL DATA POINTS FOR TRAINING AND
THE OTHER 30% FOR TESTING

Fig. 3. Predictions, 95% credible interval of the GPR model and real wind
values for the test points. Each individual ramp represents data from a run at
a different ambient temperature.

Table III shows the BIC obtained for each GPR model,
where it is clear that GPR model with exponential as covari-
ance function is the best one, in accordance with the metrics
MAE, RMSE, and R2 discussed above.

3) Cross Validation of GPR: Method 1: Gaussian Process
Regression with exponential covariance function is applied to
the data. Training points are selected randomly and constitute
the 70% of the full data, whereas test points are the remain-
ing 30%. The training and test sets are normalized in [0,1] and
the optimal hyperparameters are obtained through the conju-
gate gradient method. The predictions and the variance are
calculated with the training and test sets using Matlab2017b.
The results of the GPR model are summarized in Table IV,
where it can be seen the MAE, RMSE and R2 values for
both training and test points. MAE and RMSE for test points
are 0.1620 m/s and 0.2833 m/s, respectively, while R2 for
these test points is also high (0.99563); ultimately, errors in
the prediction are therefore small.

In Figure 3 are presented the predictions of the GPR model
for the test points, along with the estimation 95% credible
interval and the ground truth values corresponding to the
ultrasonic anemometer. As it can be observed, the predicted
values are close to the real ones and the real values in almost



Fig. 4. Predictions and real wind values for the test points, plotted as
raw voltage output from the hot-wire anemometer vs. air temperature. Each
filament-like cluster of data points represents a run at a different room
temperature.

Fig. 5. Boxplot of MAE, RMSE, and R2 of the GPR model for 100 iter-
ations with different training (70% of all data set points) and test sets (the
remaining 30%). As expected, in any cross-validation test the performance
obtained for the training set is better than that for the test subset of the data.

all the cases fall within the credible interval, which indicates
a high accuracy in the GPR model.

In Figure 4, the same predictions and ground truth values
are shown in 3D along with the voltage of the hot-wire
anemometer and the air temperature. It can be observed
the strong relationship between both variables and also the
accuracy of the predictions.

The results are obviously influenced by the training data,
which are selected randomly. It could be thought that with
other training data, worse results would be obtained. To evalu-
ate it, 100 iterations have been done selecting randomly differ-
ent training sets and consequently test sets, always complying
that 70% of the data is used for training and the remaining
30% for test. The results of the evaluation of the model are
shown in a boxplot in Figure 5. On each box, the red line is
the median, the box edges are the 25th and 75th percentiles,
the whiskers include until the most extreme data points not
considering outliers, which are represented individually as

red crosses. Similar MAE, RMSE and R2 are obtained, which
indicates that the model gives a good approximation of the
real wind as function of the hot-wire anemometer voltage and
air temperature.

4) Cross Validation of GPR: Method 2: As an alternative
cross validation of GPR to predict wind speed, we now pro-
pose to select training and testing sets, not as a given fraction
of the overall data set, as done in the previous section, but
selecting entire dataset runs for some given temperature values.
In this case the GPR is trained without any single observation
of the sensor response for some specific temperature, and we
will evaluate its performance in inferring (“interpolating”) its
behavior from the response at other temperatures.

Part of the results are shown in Figure 6. In this case,
the average RMSE of all cases is 0.024 m/s for the training
datasets and 1.734 m/s for the testing datasets. The average
MAE is 0.012 m/s and 1.373 m/s for the training and testing
datasets, respectively. As expected, these values are similar
to the results in Table IV for the training parts, but much
higher for the test datasets. This could be explained by the
lack of information the GPR has to make predictions about
the sensor behavior in conditions it has not been able to learn
from. However, it is remarkable that the probabilistic nature of
GPR allows to have a predicted uncertainty for each prediction,
and in most cases where the error is large, uncertainty is high
as well –refer to Figure 6. In particular, notice how disallowing
the GPR to learn the sensor behavior for one of the extreme
temperatures included in our study (the dataset for 30◦C),
leads to the largest errors, since the estimator in this case is
extrapolating, not interpolating, the sensor behavior for those
conditions. To quantify and demonstrate this fact, we evaluated
the average RMSE (1.51 m/s) and MAE (1.13 m/s) when
predictions are “interpolated”. On the other hand, the aver-
age RMSE and MAE values of the two datasets in which
predictions are “extrapolated” are 2.305 m/s and 1.968 m/s,
respectively, validating the insight that predictions are less
accurate when they need to be extrapolated.

5) Sensibility to Ground-Truth Errors: Since our model
proposes using the actual air temperature as an input to the
wind speed sensor model, it is in order wondering how much
does the air temperature measurement of the sensor affects the
results. Our experimental set up employs a PT100 for air tem-
perature measurement, with an accuracy of ± 0.06 ◦C at 0 ◦C .
To assess its influence in the performance of the GPR model,
different errors in the ambient temperature measurement have
been introduced. First, GPR model have been trained with the
real values of air temperature measured with the PT100. Next,
we have introduced two different errors in the test datasets and
have evaluated the predictions:

• Random error: four levels of random noise have been
evaluated in order to simulate different degrees of sensor
accuracy. We considered the scenarios of air temperature
accuracies of: ± 0.1 ◦C , ± 0.2 ◦C , ± 0.5 ◦C , and ±1 ◦C ,
respectively.

• Systematic error: an example of a typical systematic
error might be not protecting the temperature sensor
from direct solar radiation, which strongly affects its
measurements. Four levels of systematic error have been



Fig. 6. Results for the GPR cross validation (“method 2”): the GPR is trained with all data set runs, except that for one particular temperature, and the
resulting model is evaluated against the missing (“testing”) data set. Left column shows the real wind speed and the model prediction for each point, together
with its 95% credible interval. Right column shows the same data but including the raw sensor voltage and air temperature as second and third axis. Each row
of images illustrates the results for a cross validation run using a different data set as “testing” data set. We show four representative such runs out of a total
of seven. Notice that large errors are typically associated with large predicted uncertainty. Refer to the text for further discussion. (a) Prediction vs. ground
truth (Test dataset: 20◦C). (b) Prediction vs. ground truth (Test dataset: 20◦). (c) Prediction vs. ground truth (Test dataset: 22◦C). (d) Prediction vs. ground truth
(Test dataset: 22◦C). (e) Prediction vs. ground truth (Test dataset: 24◦C) (f) Prediction vs. ground truth (Test dataset: 24◦C). (g) Prediction vs. ground truth
(Test dataset: 30◦C). (h) Prediction vs. ground truth (Test dataset: 30◦C).

evaluated: + 0.25 ◦C , + 0.5 ◦C , + 1 ◦C , and + 1.5 ◦C ,
with respect to the real value.

Table V summarizes the results for MAE, RMSE, and R2,
for test points of the GPR model for both types of error above.
These values should be contrasted to Table IV, which shows

MAE, RMSE, and R2 without adding any additional noise to
measurements. As can be seen, for air temperature random
errors of ± 0.1 ◦C and ± 0.2 ◦C , the results of MAE, RMSE,
and R2 for test points are similar. For an accuracy of air
temperature of ± 0.5 ◦C the variation is more remarkable



TABLE V

RESULTS OF MAE, RMSE AND R2 FOR THE SENSITIVITY ANALYSIS

WITH DIFFERENT AIR TEMPERATURE GROUND-TRUTH RANDOM
AND SYSTEMATIC ERRORS IN TEST POINTS, FOR THE

GPR MODEL WITH EXPONENTIAL

AS COVARIANCE FUNCTION

although it might still be acceptable, whereas for ± 1 ◦C the
error is, as expected, much greater. According to the results for
systematic errors, the GPR model is more sensitive to them and
consequently producing worse predictions. Systematic errors
of up to + 0.2 ◦C are acceptable.

Summarizing, attending to the results obtained, we can
conclude that GPR model works with a reasonable accurate
with random errors of up to ± 0.5 ◦C or with systematic errors
of up to + 0.2 ◦C .

IV. CONCLUSION

Wind speed is a parameter hard to measure with accuracy
and with low-cost devices. In this paper, the calibration of a
low-cost hot-wire anemometer is proposed via machine learn-
ing techniques, attempting to solve its main drawback, namely,
the loss of accuracy when air temperature changes. After
comparing the performance of different regressions models,
Gaussian Process Regression is the model that best fits the data
and offers more precise predictions. Therefore, the problem
has been addressed using Gaussian Process Regression to
estimate a posterior distribution over the wind speed, given
the response of a hot-wire anemometer and air temperature
measurements, while also using an ultrasonic anemometer as
ground truth value to rigorously evaluate the prediction error.
According to the results, a low-cost hot-wire anemometer can
be used, after the proposed calibration process, in different
applications with reasonable accurate and over a typical range
of ambient temperature.
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